Simulation of a Periodic Jet in a Cross Flow with a RANS Solver Using an Unstructured Grid

H. L. Atkins

Computational Modeling & Simulation Branch
NASA Langley Research Center
Hampton, VA 23681-2199

Outline

- The codes
 - Flow Solver
 - Grid generation
- Geometry simplifications and grids
- Flow Model
 - Initial and inflow conditions
 - Diaphragm boundary condition
- Numerical results
 - Tuning the jet
 - Some observations

The Codes - Flow Solver

- FUN3D -- originally developed by Kyle Anderson
- Used primarily for analysis and design of steady aerodynamic flows
- Vertex-centered, unstructured grid
- 2nd-order, finite-volume
- Least-square + Roe flux-difference splitting
- Green-Gauss gradients
- Spalart-Allmaras turbulence model
- Implicit 2nd-order backward in time
- Solved by relaxation in pseudo-time
- Currently developed by the FAAST team
- Under continuous development

The Codes -- Grid Generation

- GridEx -- Development led by Bill Jones
 - CAD access, surface and inviscid grid
 - Spacing controlled by sources
- MesherX -- Development led by Mike Park
 - Grows viscous layers from a given surface mesh
 - Provides control for spatially varying
 - First spacing
 - Growth rate
 - Layer termination

The Geometry -- Simplifications and Grids

CFDVAL, Williamsburg, VA, March 29-31, 2004

The Flow Model -- Inflow and Initial Conditions

Boundary Conditions

Characteristic BC's on inflow, outflow and top

CFDVAL, Williamsburg, VA, March 29-31, 2004

Piston Boundary Condition

Typical Characteristic BC

CFDVAL, Williamsburg, VA, March 29-31, 2004

Piston Boundary Condition

Partially given
$$V_b = [] \sin([]t)$$

CFDVAL, Williamsburg, VA, March 29-31, 2004

Piston Boundary Condition

$$V_n >> V_t$$

Numerical Results -- Tuning the Jet

CFDVAL, Williamsburg, VA, March 29-31, 2004

Some Observations

Fine grid: U/U_inf at phase = 160

CFDVAL, Williamsburg, VA, March 29-31, 2004

Some Observations

Coarse grid: U/U_inf at phase = 160

CFDVAL, Williamsburg, VA, March 29-31, 2004

Some Observations

Fine grid: U/U_inf at phase = 320

Conclusions

- $\square V/V = \square (1)$
 - Dynamic flow in cavity
 - Model diaphragm on stationary boundary????
- Large difference between coarse and fine grids
 - Grid convergence????
- Vortical structures in cavity not surprising
 - Large v-component observed in the experiment could be due to an asymmetric vortical structures
- Imperfect symmetry of experiment introduces a wildcard